منابع مشابه
Cyclic Group Actions on Polynomial Rings
We consider a cyclic group of order p acting on a module incharacteristic p and show how to reduce the calculation of the symmetric algebra to that of the exterior algebra. Consider a cyclic group of order p acting on a polynomial ring S = k[x1, . . . , xr], where k is a field of characteristic p; this is equivalent to the symmetric algebra S∗(V ) on the module V generated by x1, . . . , xr. We...
متن کاملOn the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملCyclic homology and equivariant homology
The purpose of this paper is to explore the relationship between the cyclic homology and cohomology theories of Connes [9-11], see also Loday and Quillen [20], and "IF equivariant homology and cohomology theories. Here II" is the circle group. The most general results involve the definitions of the cyclic homology of cyclic chain complexes and the notions of cyclic and cocyclic spaces so precis...
متن کاملOn the Cyclic Homology of Commutative Algebras over Arbitrary Ground Rings
The algebra ΛV ⊗ Γ(dV ) is a divided power version of the de Rham algebra; in the particular case when k is a field of characteristic zero, the spectral sequences above agree with those found in [BuV], where it is shown they degenerate at the E term. For arbitrary ground rings we prove here (theorem 2.3) that if Vn = 0 for n ≥ 2 then E = E. From this we derive a formula for the Hochschild homol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Center Publications
سال: 1986
ISSN: 0137-6934,1730-6299
DOI: 10.4064/-18-1-305-312